497 research outputs found

    Electronic structure and electric-field gradients analysis in CeIn3CeIn_3

    Full text link
    Electric field gradients (EFG's) were calculated for the CeIn3CeIn_3 compound at both 115In^{115}In and 140Ce^{140}Ce sites. The calculations were performed within the density functional theory (DFT) using the augmented plane waves plus local orbital (APW+lo) method employing the so-called LDA+U scheme. The CeIn3CeIn_3 compound were treated as nonmagnetic, ferromagnetic, and antiferromagnetic cases. Our result shows that the calculated EFG's are dominated at the 140Ce^{140}Ce site by the Ce-4f states. An approximately linear relation is intuited between the main component of the EFG's and total density of states (DOS) at Fermi level. The EFG's from our LDA+U calculations are in better agreement with experiment than previous EFG results, where appropriate correlations had not been taken into account among 4f-electrons. Our result indicates that correlations among 4f-electrons play an important role in this compound and must be taken into account

    The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study

    Full text link
    The electronic and geometrical properties of bulk americium and square and hexagonal americium monolayers have been studied with the full-potential linearized augmented plane wave (FP-LAPW) method. The effects of several common approximations are examined: (1) non-spin polarization (NSP) vs. spin polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs. full-relativity (i.e., with spin-orbit (SO) coupling included); (3) local-density approximation (LDA) vs. generalized-gradient approximation (GGA). Our results indicate that both spin polarization and spin orbit coupling play important roles in determining the geometrical and electronic properties of americium bulk and monolayers. A compression of both americium square and hexagonal monolayers compared to the americium bulk is also observed. In general, the LDA is found to underestimate the equilibrium lattice constant and give a larger total energy compared to the GGA calculations. While spin orbit coupling shows a similar effect on both square and hexagonal monolayer calculations regardless of the model, GGA versus LDA, an unusual spin polarization effect on both square and hexagonal monolayers is found in the LDA results as compared with the GGA results. The 5f delocalization transition of americium is employed to explain our observed unusual spin polarization effect. In addition, our results at the LDA level of theory indicate a possible 5f delocalization could happen in the americium surface within the same Am II (fcc crystal structure) phase, unlike the usually reported americium 5f delocalization which is associated with crystal structure change. The similarities and dissimilarities between the properties of an Am monolayer and a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure

    Density-functional theory of polar insulators

    Get PDF
    We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster limit or under periodic boundary conditions. For polar crystals, we find that the two procedures are not equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous ``electric field'' which is absent from the usual local approximations, and the Kohn-Sham electronic system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the polarization deduced from Kohn-Sham wavefunctions is incorrect even if the exact functional is used
    • …
    corecore